Peptide design by artificial neural networks and computer-based evolutionary search.
نویسندگان
چکیده
A technique for systematic peptide variation by a combination of rational and evolutionary approaches is presented. The design scheme consists of five consecutive steps: (i) identification of a "seed peptide" with a desired activity, (ii) generation of variants selected from a physicochemical space around the seed peptide, (iii) synthesis and testing of this biased library, (iv) modeling of a quantitative sequence-activity relationship by an artificial neural network, and (v) de novo design by a computer-based evolutionary search in sequence space using the trained neural network as the fitness function. This strategy was successfully applied to the identification of novel peptides that fully prevent the positive chronotropic effect of anti-beta1-adrenoreceptor autoantibodies from the serum of patients with dilated cardiomyopathy. The seed peptide, comprising 10 residues, was derived by epitope mapping from an extracellular loop of human beta1-adrenoreceptor. A set of 90 peptides was synthesized and tested to provide training data for neural network development. De novo design revealed peptides with desired activities that do not match the seed peptide sequence. These results demonstrate that computer-based evolutionary searches can generate novel peptides with substantial biological activity.
منابع مشابه
Determining water quality along the river with using evolutionary artificial neural networks (Case Study, Karoon River , Shahid Abbaspur-Arab Asad reach)
Rivers are important as the main source of supply for drinking, agriculture and industry.However, drinking water quality in terms of qualitative parameters, is the most important variable. Studias and predicting changes in quality parameters along a river, are one of the goals of water resources planners and managers. In this regard, many water quality models in order to maintain better water ...
متن کاملEvolutionary Design of Artificial Neural Networks Using a Descriptive Encoding Language
Title of dissertation: Evolutionary Design of Artificial Neural Networks Using a Descriptive Encoding Language Jae-Yoon Jung, Doctor of Philosophy, 2007 Dissertation directed by: Dr. James A. Reggia Department of Computer Science Automated design of artificial neural networks by evolutionary algorithms (neuroevolution) has generated much recent research both because successful approaches will f...
متن کاملEstimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks
Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...
متن کاملStructural Reliability: An Assessment Using a New and Efficient Two-Phase Method Based on Artificial Neural Network and a Harmony Search Algorithm
In this research, a two-phase algorithm based on the artificial neural network (ANN) and a harmony search (HS) algorithm has been developed with the aim of assessing the reliability of structures with implicit limit state functions. The proposed method involves the generation of datasets to be used specifically for training by Finite Element analysis, to establish an ANN model using a proven AN...
متن کاملSolving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks
In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 21 شماره
صفحات -
تاریخ انتشار 1998